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SUMMARY

In this paper a new object-oriented (OO) approach is presented for automatic parallel advancing front
based surface mesh generation and adaptive remeshing for complex con�gurations. Based on the ST++-
system the advantages of the OO design and implementation compared to the traditional structural ap-
proach are described. Algorithmic enhancements to the advancing front method are explained, enabling
a robust NURBS based triangulation process directly on B-rep CAD data. The message passing (MPI)
parallelization strategy together with the achievable performance improvements are demonstrated. With
the outlined parallel geometry analysis/rasterization a powerful method is described to derive automat-
ically a well suited mesh size speci�cation without any user-interaction from scratch. The application
of this method to a complex ‘real world’ example �nishes this paper. Copyright ? 2004 John Wiley
& Sons, Ltd.

1. INTRODUCTION

Surface mesh generation based on B-rep CAD data is an important task in the aerospace
industry working with numerical (CFD) simulations. Especially for complex con�gurations
consisting of several thousands of CAD patches the generation of a surface grid is a time-
consuming task when the CAD geometry has to be cleaned manually again and again due to
failures in the meshing procedure.
Therefore a robust and fast surface triangulation method capable of handling non-perfect

CAD data would be extremely helpful.

2. OBJECT-ORIENTED APPROACH

In this paper a new object-oriented (OO) approach to surface meshing is presented. It has
been realized in the ST++-system, currently developed at EADS M and based on the existing
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Figure 1. General design of the system.

FLITE–ST surface mesh generator from the Civil Engineering Department of the University
of Wales, Swansea (UWS) [1–3]. The OO-methodology has been choosen because the OO
concepts of polymorphism, inheritance and encapsulation [4; 5] support the building of large
and complex software systems.
Compared to the procedural programming in, for example, Fortran77 or C normally also

better readable, maintainable and extensible code results through the powerful features sup-
ported in OO languages such as strongly typed interfaces, templates, design patterns, etc.
[6; 7]. Arguments of using C++ as implementation language are the rich OO features the
language o�ers‡ together with the downward compatibility to C which enables the integration
and reuse of already available and validated C and Fortran77=90 routines.
The general design of the ST++-system is shown in Figure 1. It consists of three main

components: the geometry de�nition, the mesh size speci�cation and the surface mesher itself.
To generate a surface mesh the following main steps are executed:

1. Initialize the geometry de�nition from CAD data.§
2. If only parts of the geometry are to be meshed, extract the selected subgeometry.
3. Initialize the mesh size speci�cation.
4. Perform the advancing front triangulation.
5. Enhance the surface mesh.
6. Export=prepare the surface mesh for the volume mesh generation.

The geometry de�nition object is illustrated in detail in Figure 2. It encapsulates all the
geometrical and topological entities imported from the CAD database. Supported import for-

‡Strong type checks, single and multiple inheritance, templates, abstract classes and interfaces, streams, exceptions,
the standard template library (STL), : : :

§Given in the form of a boundary representation (B-Rep) structure, i.e. with geometrical and topological types of
data.
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Figure 2. Layout of the geometry de�nition.

mats are the industrial relevant data exchange formats NASA-IGES [8], STEP [9] and the
traditional FLITE format [1]. Various parametric curve and surface types represented by spline
composite curves and tensor-product surfaces such as Ferguson [10], Bezier [11] or NURBS
[12] are available. Important is that all speci�c point, curve and surface objects are derived
from one abstract interface respectively so that all di�erent types share a common interface
that algorithms can work with. In this way it is possible to implement an advancing front
triangulation algorithm independent of the underlying speci�c mathematical curve or surface
de�nition. Compared to ‘good old’ Fortran77-code this is an enormous advantage because the
developer need not take care of the type of curve (surface) given each time an operation on
a curve (surface) is executed. Only the common interface for this speci�c curve (surface)
type has to be implemented. Further, the integration of additional curve and surface types is
supported transparently to codes only working with the abstract interface. For example, for
curves, a part of the interface looks like:

• Evaluate(doubleT u, doubleT *outXYZ, doubleT *outTangent=0),
• CalculateProjection(const doubleT *xyz, doubleT &outU),
• CalculateArcLength(doubleT u1, doubleT u2, doubleT &outL).

The second major component of the ST++-system is the mesh size speci�cation object
shown in Figure 3. This enables the control of the spatial distribution of the nodes and
the size and the shape of the elements to be generated. By means of background grids and
sources the local mesh size together with certain stretching directions is de�ned for each
spatial location. Starting from a constant mesh size all over the domain the mesh size can
be modi�ed locally by an optional tetrahedral background grid containing local sizes at each
node together with stretching directions. Via superimposed (optional) sources the mesh size
can be locally re�ned. Several types of sources are available (point, line, triangle, : : :) to
support a �exible selection and application depending on the geometrical demands. To allow
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Figure 3. Ingredients of the mesh size speci�cation.

an easy extension towards other source types an abstract source interface has been used from
which all kinds of sources have been derived. To add other source types only the following
lean interface has to be implemented:

• GetMinSpacing(doubleT &outMinSpacing).
• GetSpacing(const doubleT *xyz, doubleT &outSpacing).

Additionally a Cartesian background mesh can be used to de�ne the mesh size completely
or to re�ne the mesh size further at certain locations. The automatic determination of a well
suited Cartesian background mesh is presented in Section 6. This approach di�ers from the
octree based approaches presented in [13; 14], because the sizes of the Cartesian cells are
largely independent from the local element sizes calculated. Only the scalar quantities de�ned
in each Cartesian cell are used to derive the mesh size at a certain point in space. Experience
has shown that the Cartesian cell size is generally two to eight times larger than the calculated
lengths, hence, the Cartesian meshes created are much smaller than those grids generated in
References [13; 14].
Important is that all components of the mesh size speci�cation objects can be modi�ed

dynamically which is a preliminary requirement for a dynamic mesh modi�cation process.
Certain adaptation criteria will cause local changes of the mesh size which can then be used
to adapt the surface grid accordingly.
The third component of the ST++-system is the advancing front surface mesh generator

itself, illustrated in Figure 4. Inside this object the di�erent steps of the meshing procedure
are divided across several other objects. The mesh generator itself supervises and controls
the execution and the exchange of data only. The di�erent steps of the advancing front al-
gorithm [2; 3; 15–17] are encapsulated in the curve discretizer, the initial front generator and
the advancing front triangulator object. For all topological faces to be meshed, the curve
discretizer discretizes all the topological edges connected to each face (but each edge only
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Figure 4. Components of the surface mesh generator.

once). This set of straight sides is given to the initial front generator object which builds up
the initial advancing front. This starting front is then given to the triangulator together with
a surface mesh object. When no sides are left in the front the triangulation is completed and
the surface mesh is transferred to the mesh enhancer for optimization. After optional prepa-
ration steps (removal of duplicate nodes and edges, correcting the orientation of the facets,
checks, : : :) the merged surface mesh comprises the starting point for the volume triangulation.

3. ALGORITHMIC ENHANCEMENTS

Generally the advancing front triangulation algorithm can be formulated as follows (written
in pseudo-code):

while(!advancingFront.Empty( )){
side = advancingFront.GetSide(sideSelectionStrategy);
idealPoint = CalculateIdealPoint(side);
candidates = DetermineCandidatePoints(advancingFront);
newTriangle = FormTriangle(side, idealPoint, candidates);
advancingFront.Update(side, newTriangle);

}

During the di�erent steps of this algorithm several alternative ways are available to reach
the desired goal.
Firstly one has to select a side from the front. Normally the sides are organized in a heap

structure and the shortest side at the top of the heap is always taken. This is a reasonable and
stable strategy to avoid crossing fronts. In the vicinity of large and small sides the smaller ones
are taken �rst preventing large triangles, possibly crossing the front. An additional relevant
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Figure 5. E�ects of the di�erent side selection strategies.

parameter is the age of the sides in the front. When there is a large number of sides with
nearly the same length, this ‘shortest sides �rst’-strategy tends to produce outgrowths as can
be seen in Figure 6. The proposed improved strategy takes additionally the age of the sides
into account, so that, if sides have nearly the same length, the older side is privileged. In
the real code this has been integrated by means of a discretization process of the length of
the sides together with an age count. In the implementation the sides are now strictly sorted
�rstly by their discretized length and, if the length is equal, then by their age. The e�ects of
this ‘old sides �rst’-strategy¶ are clearly visible in Figure 6. Especially for large areas, the
improved strategy prioritises the old sides so that the front is closed more homogeneously.
The real bene�t gained from this ‘old sides �rst’-strategy is the reduction of the number of
sides in the front during the entire advancing front algorithm because the boundary of the
area to be meshed is kept as small as possible. In Figure 5, the history of the number of
sides in the front is plotted during the triangulation process for the meshes shown in Figure
6. Because the advancing front algorithm scales nearly linearly with the number of sides in
the front, this results in a noticeable total runtime reduction. For the example shown, the ‘old
sides �rst’-strategy needs only 75% of the time needed for the ‘shortest sides �rst’-strategy.
The next critical step is the calculation of the ‘ideal point’, i.e. the computation of the

spatial location of the point forming with the current side of the front the optimal triangle in
size and shape according to the local mesh size given. The standard method is to calculate
an initial guess and then to perform an iterative procedure to determine the correct position.‖

The initial guess is normally computed in the 2-D parametric space as the point on the
perpendicular bisector of the side with length lside at a distance equal to lside away from the
side midpoint. This point is then used as the starting point for a Newton method to solve the
non-linear system of equations iteratively. Typically for a Newton method, the convergence is
highly dependent on a good starting point. Assuming that the mapping from the 2-D parameter

¶More consistently it should be called ‘shortest sides �rst (but when the lengths are nearly equal prefer the older
side)’-strategy, please allow us the shortcut and keep the intended meaning in mind.

‖For details see [2; 3].
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Figure 6. Comparison of both side selection strategies.

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 45:341–364



348 U. TREMEL ET AL.

Figure 7. Parameter space and invalid mesh due to calculation errors of the ‘ideal point’.

space into the 3-D physical space does not introduce signi�cant anisotropy the starting point
is in most cases quite close to the ‘ideal point’, and the iterative Newton method converges
in a few steps. Therefore, this way of determining the ‘ideal point’ is highly e�cient in
terms of CPU-time and memory requirements. However, native unprepared CAD surfaces,
especially those NURBS imported directly from the CAD system via IGES or STEP, do not
necessarily ful�ll the requirements to guarantee a nearly isotropic mapping between 2-D and
3-D space. Stretchings up to a ratio of 500 or more are not unusual. But this causes the
standard procedure of calculating the ‘ideal point’ to fail completely. If this happens in the
domain to be meshed, and no other points are available to form a new triangle, the result of
the diverged Newton method will be used, generating an invalid mesh. This is illustrated in
Figure 7.
Therefore an improved ‘ideal point’-calculation method has been used in the ST++-system,

consisting of two major stages. During the �rst stage, the midpoint of the side is iteratively
calculated. In the second stage, this midpoint and modi�ed parametric side normal vectors are
used to calculate an initial guess good enough to reach convergence of the Newton method.
In detail the improved algorithm can be formulated as follows:

1. Calculate the 2-D parametric coordinates (u; v)mid of the 3-D midpoint (x; y; z)mid of the
side projected onto the surface. This can be achieved by trying to minimize the length
di�erence of the two halves of the side in normalized physical space, e.g. again via an
iterative Newton method.

2. When the midpoint has been determined up to a certain tolerance the initial guess (u; v)(n)new
is computed as (u; v)(n)new = (u; v)mid + �(n)(u; v)normal. � is used here as a relaxation factor
reduced each time the Newton method has to be restarted again due to divergence.
Depending on the change of the relaxation parameter the maximum number of restarts
allowed has to be adjusted. Typically three to �ve restarts are applied in practice where
the relaxation is reduced each time by a factor of 0:1 to 0:5. When convergence cannot be
achieved, a monitoring and use of the best point reached during all steps is heuristically
good enough to continue with the next side. One can expect that the enhancements later
on improve these areas. Concerning (u; v)normal care has to be taken to �rst transform
the side vector into a normalized 2-D space where locally the anisotropy in the mapping
into 3-D space is removed, before rotating the vector. The normal vector is then mapped
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Figure 8. Convergence history of the iterative methods.

Figure 9. Valid mesh due to improved ‘ideal point’ calculations.

back into the original parametric space. Summerized the normal vector is calculated as
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To illustrate the procedure a typical convergence history of the intermediate results during the
iterations is given in Figure 8.
The application of this improved approach to the same NURBS surface de�nition used

for Figure 7 is demonstrated in Figure 9. It is clearly visible that now a valid mesh can be
obtained by the advancing front method due to the improved ‘ideal point’-calculations.
In the very rare case of a divergence of all attempts the calculation of the ‘ideal point’ is

performed in 3-D space by placing the point on the perpendicular bisector of the side normal
to the side and normal to the surface normal at the midpoint of the side. This point is then
projected back onto the surface and is used as the ‘ideal point’. Although this alternative
procedure is more expensive it causes only negligible overhead due to the adaptive usage on
demand. But concerning the robustness of the meshing procedure it is an important ingredient
preventing the triangulation to fail.
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Another aspect concerning robustness are the face-side intersection checks to be applied.
When the mappings between 2-D parameter and 3-D physical space are highly anisotropic
the standard 2-D intersection tests are sometimes not e�ective any more to detect crossing
fronts. Due to the iterative procedures applied to determine a new point, a few sides crossing
in 3-D space do not cross in 2-D space and vice versa. Hence, real 3-D intersection checks
between the sides of the front and the new triangle to be generated have to be applied when
parametric distortions are detected. To account for tolerance problems the intersection check
is expanded to check also if sides of the front are too close to the new face causing the
face to be rejected. Here a minimum distance of ten to hundred times the CAD tolerance has
proven to be a useful measure. To minimize the overhead in the intersection calculations only
sides in the vicinity of the new sides to be created have to be used. This search of close sides
is performed e�ciently by means of an alternating digital tree (ADT) containing the sides in
the front.
Experience has shown that the 3-D intersection checks improved the robustness up to

a production level where the triangulation procedure succeeds also for badly parameterized
CAD data.

4. ADAPTIVE SURFACE REMESHING

Once a surface mesh has been created and used normally the grid has to be adapted locally,
depending on various requirements such as re�nements improving the spatial resolution, coars-
enings reducing the number of triangles, etc. These modi�cations are important for stationary
cases but even more important for transient calculations where a continuously changing state
has to be managed.
For mesh adaptations by means of the ST++-system, the intended change of the spatial

resolution has to be introduced via the mesh size speci�cation object. This can be reached in
various ways:

• Insertion=modi�cation=deletion of sources.
• Modi�cation of the tetrahedral background grid.
• Modi�cation of the Cartesian background grid.

Once the new mesh size is de�ned, two options are available. Firstly, the mesh generation
could be started from scratch again neglecting all the work invested during the last surface
mesh generation. This option should be selected only if the mesh size has been modi�ed in
the majority of the domain. However, if changes have occurred only locally, keeping most
of the previous mesh and remeshing only those parts not respecting the mesh size is the
far more e�cient strategy. Therefore, a local remeshing facility has been incorporated into
the ST++-system, as illustrated in Figure 10. The local remeshing procedure starts with the
determination of all elements violating the mesh size, i.e. all triangles with edges larger or
smaller than the speci�ed mesh size, times a certain tolerance factor, are �agged. After a few
smoothing cycles of the markers, the selected parts of the mesh are extracted and removed
from the mesh. From the extracted submesh all referenced surfaces are collected. For these
surfaces, the orientation of the surface relative to the triangulation is determined to ensure
the correct orientation of the advancing fronts later on. Then, all the boundary edges of the
submesh are extracted and processed, so that for each topological face referenced all boundary
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Figure 10. Objects involved during a local remeshing.

edges are known. After all edges lying on curves have been re-discretized according to the
new mesh size, the new boundary mesh containing all the boundary edges is available. These
edges are used for the creation of the initial fronts. When the advancing front triangulations
together with the enhancements have been performed for each topological face the new mesh
is merged with the old one. The resulting surface mesh can then be prepared again for other
tasks such as visualisation, volume (re-)meshing, etc. In pseudo-code the algorithm can be
formulated as follows:

geometry = InitGeometry( ); // <-- old
meshSizeSpec = InitMeshSizeSpecification( ); // <-- modified
surfaceMesh = InitSurfaceMesh( ); // <-- old
// --- analyse mesh ---
meshAnalyser.FlagMeshSizeViolations(surfaceMesh);
// --- extract selected elements ---
surfaceMesh.ExtractAndRemoveSelectedSubmesh(submesh);
// ===== remesh submesh =====
topoFacesSet = submesh.GetTopoFaceIDs( );
/* determine orientation of surfaces relative to

orientation of triangles */
DetermineSurfaceOrientations(geometry, topoFacesSet,

subMesh);
boundMesh = submesh.ExtractBoundaryEdges( );
curveDiscretizer.Rediscretize(geometry, meshSizeSpec,

boundMesh);
// --- remesh holes ---
for(FI=topoFacesSet.begin( ); FI!=topoFacesSet.end( ); {++} FI){
advFront = initialFrontGenerator.InitFront(geometry, *FI,

boundMesh);
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selected submesh

unselected mesh

re-discretized curves

unmodified mesh

new surface mesh

unmodified mesh

new surface mesh
(after source has been moved)

unmodified mesh

Figure 11. Remeshing example based on inserted=moving point sources.

holeMesh = advFrontTriangulator.Triangulate(geometry,
meshSizeSpec,
advFront);

meshEnhancer.Optimize(geometry, meshSizeSpec, holeMesh);
surfaceMesh += holeMesh;

}
DoPostProcessing(surfaceMesh);

In Figure 11, the remeshing process is demonstrated on a real example. At the beginning,
two point sources are inserted into the mesh size speci�cation object. Then the part of the
mesh now violating the mesh size is selected and remeshed. Subsequently one of the point
sources is moved and the mesh size assigned to this source is modi�ed which results in the
last surface mesh shown.
In case of volume meshes it is planned to cut out holes consisting of elements not respecting

the mesh size. The outer boundary of each hole lying on the CAD geometry will be remeshed
as described above prior to the remeshing of the interior of the hole.

5. PARALLELIZATION

At present the CAD de�nition of complex con�gurations such as �ghter aircrafts consists of
thousands of patches. For such large geometries, the time needed to run the surface mesh
generator is an important factor. Therefore, to reduce the runtime requirements, a paralleliza-
tion of the initial surface mesh generation procedure itself and of the surface remeshing has
been introduced in the ST++-system.
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Figure 12. Architecture of the parallel surface mesher.

The parallelization of the surface meshing is incorporated via a pipelining approach where
the loop over all the topological faces to be meshed is executed in parallel. In Figure 12 the
architecture of the parallel system is outlined. Initially, the available processes are divided into
three groups. One process has the role of the distributor, one of the merger and all the others
are assigned to the worker group. The distributor process initializes the complete geometry
de�nition and has then the task to extract and send subgeometries to the next worker waiting
for data. When the worker process has meshed the received subgeometry, i.e. �nished the
advancing front triangulation together with the enhancements, the surface mesh is delivered
to the merger. At the end of the pipeline this merger process receives all the single surface
grids and takes care of their assembly into one large surface mesh. Based on the message
passing programming model (MPI [18; 19]) the parallel algorithm consists of the following
steps:

if(IAmTheDistributor){
geometry = InitGeometry( );
while(!allTopologicalFacesProcessed( )){
setOfFaces = GetSetOfFacesToBeMeshed( ); // <-- chuncksize
subgeometry = geometry.Extract(setOfFaces);
worker = DetermineWaitingWorker( );
SendGeometry(subgeometry, worker);

}
SendThankYouAndGoodByToAllWorker( ); // (;-)

}
else if(IAmAWorker){
meshSizeSpec = InitMeshSizeSpecification( );
while(!ReceivedThankYouAndGoodByFromDistributor( )){
geometry = RequestGeometryFromDistributor( );
surfaceMesh = GenerateSurfaceMesh(geometry, meshSizeSpec);
SendSurfaceMesh(surfaceMesh, merger);
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}
SendFinishedToMerger( );

}
else if(IAmTheMerger)
while(!ReceivedFinishedFromAllWorkers( )){
surfaceMesh = ReceiveSurfaceMeshFromAnyWorker( );
completeSurfaceMesh += surfaceMesh;

}
DoPostProcessing(completeSurfaceMesh);

}

Nevertheless, a few pitfalls are inherent in the parallel execution. In the above outlined
algorithm, the curve discretization is left to the worker for a better work share. This is valid
if and only if it can be guaranteed that the result of this procedure is exactly the same on each
worker process, because otherwise �oating point roundo� errors might cause some curves to
be discretized with one side more or one side less. It is a preliminary requirement for the
merger that all curves are discretized in the same way, otherwise the assembly of the single
surface grids fails due to non-corresponding boundaries. Therefore, the following modi�cation
is optionally available:

• The distributor pre-discretizes all the edges of the subgeometry (if not already available)
and sends the subgeometry together with the discretized edges to the worker.

• The worker receives the subgeometry together with the discretized edges and immediately
starts with the creation of the initial front based on the straight sides received.

Although this burdens the distributor with a higher work load, this is not critical due to the
following reasons:

• The distributor keeps all discretized edges. If a subgeometry contains an already dis-
cretized edge, these sides are used again. This means that after a certain small startup
delay (discretizing edges needs only a very small fraction of the time needed for the
advancing front triangulation), the maximum performance is reached again because only
the new edges needed have to be discretized. It should be mentioned that the overhead
for the transmission of the sides is neglectible because they are only added to the mes-
sage bu�er. This means the number of messages to be send is the same, only their size
increases.

• It is possible to overlap the di�erent tasks. The distributor can continue pre-discretizing
edges concurrently to the worker until at least one worker requests data. Only non-
blocking communication calls have to be used.

The surface remeshing has been parallelized in a similar way. It starts with the parallel
analysis of an existing surface mesh, which is partitioned across the available processes with
one element overlap by means of the MeshLib.∗∗ As partitioning strategy generally a graph
based partitioning scheme is applied although a recursive coordinate bisection strategy also

∗∗An EADS M internal OO library for the parallel handling of hybrid unstructured meshes, e.g. fully parallel
on-the-�y partitioning, re-partitioning, creation of overlap cells across domains, quality analysis, feature extraction,
submesh extraction, I=O, communication support, etc.
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works well. Important is that compact partitions result and that the number of nodes is balanced
across all domains to achieve a good load balancing. To ensure that both the sequential and
the parallel marking algorithms result in the same set of markers, only the state of the external
elements†† has to be exchanged additionally after each marking loop in the parallel version.
Having marked all parts of the surface grid to be remeshed, all partitions are collected on
the distributor process.‡‡ The distributor then extracts the parts to be remeshed and sends the
unmodi�ed parts immediately to the merger process. From the kept parts the corresponding
boundary edges are extracted and all edges lying on curves have to be rediscretized. This is
executed in parallel in the same pipelining approach described above. For each curve to be
rediscretized the distributor determines the corresponding endpoints and send this information
together with the curve itself to the next free worker process, which in turn sends the newly
discretized edges to the merger process. After all edges have been rediscretized, the new
boundary edges are returned to the distributor and used together with the unmodi�ed edges
to form the initial fronts of the holes to be remeshed. The now following loop over the
faces to be remeshed is executed in parallel again in the pipelining scheme already described
above, the only di�erence is, that the initial fronts are now always prepared on the distributor
process based on the existing boundary edges. After all holes have been remeshed by the
worker processes and sent to the merger process, the merger takes care about recombining all
parts into a single (large) surface mesh. Having done this tasks together with the necessary
post-processing operations like correcting the face orientation, etc., the merger is ready to
deliver the new mesh for further tasks like e.g. volume remeshing.
Experience has shown that the parallel algorithm scales quite well with the number of

processors. Depending on the type of hardware used, the communication network and the
problem size, a linear speed-up is normally obtained also for small problems containing a
su�ciently large number of patches. Especially for complex geometries containing a large
number of patches the time needed to get a surface mesh is greatly reduced in parallel mode
if multiple processors are available.

6. RASTERIZATION OF THE GEOMETRY

A fully automatic and parallel feature-based rasterization of native CAD data has been de-
veloped. The local curvature and characteristic length are investigated along CAD curves
and inside trimmed CAD surfaces in order to de�ne local sample lengths. A locally re�ned
Cartesian background mesh (octree data-structure) is constructed to prolongate and therewith
smooth the sample lengths. During the surface mesh generation, the Cartesian background
mesh serves as the mesh size speci�cation. Details are provided in Reference [20].

6.1. Rasterization of Native CAD Curves

The rasterization of CAD curves are controlled by three sampling parameters, which are
speci�ed by the user: minimal arc length Lmin, maximal arc length Lmax and maximal curvature

††duplicated elements in the overlap area of a partition owned from another process.
‡‡It is assumed that the surface mesh �ts completely into the memory of one process, which should normally be
the case also for large surface meshes.
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Figure 13. Raster boxes.

angle �max. Now a CAD curve is subdivided into consecutive curve segments applying the
following three sampling criteria: the arc length of a curve segment must not be smaller than
the speci�ed minimal arc length Lmin. Conversely the curve segment length must be smaller
then the maximal arc length Lmax. Last but not least, the curvature angle must be smaller
than the maximal curvature angle �max. The last sampling criterion is only applied, if the arc
length is larger than the minimal arc length Lmin. The curvature angle is taken as the angle
between the tangential vectors at the two end points of a curve segment. The sample length
cannot be larger than the length of the corresponding CAD curve.
Finally, all curve segments are approximated by straight lines. For each straight line a

bounding box is determined: the bounding box is called raster box, because it controls the
local resolution of the later Cartesian background mesh. Figure 13 shows the raster boxes
for a CAD curve around the leading edge of the ONERA M6 wing (in strongly magni�ed
resolution). The entire CAD curve is enclosed by the raster boxes. Besides, the �nal Cartesian
grid is visible in the plane cutting the CAD curve.

6.2. Rasterization of Native CAD Surfaces

The rasterization of CAD surfaces requires the same three user speci�ed sampling parameters
Lmin, Lmax and �max, which are used also for curve rasterization. Because only the part inside a
trimmed CAD surface is considered, a scan-line algorithm from computer graphics is applied,
[21; 22]. As �rst step, the trimming CAD curves are approximated by sequences of straight
lines. For this, they are rasterized as described before. The resulting straight lines in physical
(Cartesian) space are transformed to the (u−v)-parameter space of the CAD surface, in which
the remaining computation takes place.
The second step consists of computing the stencil point distribution, where the local surface

curvature will be investigated later. For both u- and v-direction equally distributed iso-curves
(probes) of the CAD surface are rasterized applying again the previous curve rasterization
algorithm. But this time the curvature angle is de�ned as the angle between the surface normal
vectors at the end points of a curve segment. The end points of the evaluated curve segments
are taken as the sought stencil points. For each direction, the �nal stencil point distribution
is extracted from these probes. In Figure 14 the �nal stencil point distribution in u- and
v-direction are represented by the circles.
Now the scan-line algorithm is applied separately for the u- and v-iso-curves, which are

de�ned by the stencil points (third step). It identi�es that part of the iso-curves, which are
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Figure 14. Rasterization of trimmed surface.

inside the trimmed surface or rather inside the polygon constituted by the sequences of straight
lines. The demarcations are drawn as squares in Figure 14. However, these inner curve parts
are rasterized again with the presented approach. Afterwards, the computed sample lengths
are related to the stencil points located inside the trimmed surface (circles drawn with thick
lines in Figure 14).
Every stencil point inside the trimmed surface gets a raster box according to the stored

sample length. Additional raster boxes are created, if the distance between two stencil points
is larger than their sample lengths. In this way, the trimmed surface is enclosed by raster
boxes completely, which are used for the generation of the Cartesian background
mesh.

6.3. Cartesian background mesh

The locally re�ned Cartesian background mesh speci�es the mesh size required by the surface
mesh generator. It bases on the hierarchical octree-data structure. which describes the connec-
tivity between the Cartesian cells [23–25]. The raster boxes along the CAD curves and CAD
surfaces, determine the local resolution of the Cartesian background mesh: all Cartesian cells
are identi�ed, which intersect a raster box. These Cartesian cells must not be larger than the
current raster box. Besides, the sample length of the corresponding curve segment is stored
in every intersected Cartesian cell. At the end, the Cartesian background mesh is smoothed
due to an one-level di�erence rule: it is not allowed, that two neighbouring Cartesian cells
di�er by more than one re�nement level.
The stored sample lengths are prolongated through the Cartesian mesh. The rate of change

between adjacent Cartesian cells is limited by an user-de�ned slope. In this way, a smoothed
sample length distribution is achieved in the complete �ow domain. Moreover, the user is
able to control the rate of coarsening of the triangulation by these slope parameter. Finally,
the gradient of the sample length is calculated using a least square method.
During generation of the surface triangle mesh, the Cartesian background mesh speci�es

the local mesh size. Now the mesh size is required for a point. First, the Cartesian cell is
identi�ed applying the hierarchical octree data-structure, which encloses this point. Then the
sought mesh size is interpolated linearly using the sample length and its gradient, which are
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Figure 15. Architecture of the parallel rasterization program.

stored in the Cartesian cell. It is to emphasis, that the smoothed mesh size speci�cation is
also available in space and therefore usable by a tetrahedral mesh generator.

6.4. Parallelization

The parallelization of the rasterization process is incorporated via a pipelining approach: the
loop over all topological curves and faces to be rasterized is executed in parallel. The parallel
algorithm bases on the message passing programming model (MPI). In Figure 15 the archi-
tecture of the parallel system is outlined. Initially, the available processes are divided into
three groups. One process has the role of the distributor, one of the collector and all others
are assigned to the worker group. The distributor process initializes the complete geometry
de�nition and has then the task to extract and send sub-geometries to the next worker waiting
for data. When the worker process has rasterized the received sub-geometry, i.e. computed all
the raster boxes enclosing the CAD curve or CAD surface, these raster boxes are delivered
to the distributor. At the end of the pipeline this distributor receives all the raster boxes and
generates the Cartesian background mesh and prolongates the sample lengths. Therefore, cur-
rently the operations for the Cartesian background mesh are implemented sequentially. The
parallelization of these operations will be done soon.

7. ‘REAL WORLD’ EXAMPLE

To demonstrate the capabilities of the new ST++-system a highly detailed arti�cial �ghter
aircraft con�guration has been selected equipped with all kinds of (large) appendages and
(very small) sensors. This con�gurations consists of about 2750 topological faces and 6800
topological edges, resulting in an approximately 140 MB large STEP description (B-Rep
model). Details of the con�guration together with the created surface mesh are shown in
Figures 16, 19.
The described surface mesh generation was completely performed in batch-mode on a

Linux cluster equipped with dual 2GHz XEON CPUs and 2GB memory per node (RDRAM)
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Figure 16. Bottom view of complete con�guration.

connected via fast ethernet. In the following all timings refer to wall-clock timings if not
otherwise stated.
In the �rst stage the rasterization of the boundary representation given in STEP format was

performed in parallel on 16 processors in 6:24 (min). As input only the following parameters
had been used:

• (min.=max.) default raster length for topological edges and faces: (4=50) (mm).
• (min.=max.) raster length for the group ‘ADTs’: (0.5=5) (mm).
• (min.=max.) raster length for the group ‘Near�eld’: (0.5= 5) (m).
The resulting Cartesian mesh contained approximately 1,4 million cells. This backround

grid was solely used to de�ne the mesh size for the surface mesh generator. No additional
sources had been de�ned (Figures 17–21).
In the second stage the surface mesh generator was started with the geometry and the

Cartesian mesh and took on 32 processors 6:40 (min) to generate the valid surface mesh
shown containing approximately 2 million triangles. Compared to the 126 (min) needed for a
sequential run this corresponds to a parallel speed-up of about 20. Speed-up values for other
number of processors are shown Figure 22. Case A corresponds to runs where the distributor
performed the edge discretization whereas in case B the worker discretized the edges them-
selves in parallel. Up to 16 processors the pipelining approach used for the parallelisation
scales quite well but degrades for a larger number of CPUs. Tests have shown that a high
performance network like Myrinet only has a small positive impact on the results. Therefore,
a modi�ed parallelization approach might be incorporated in the future consisting of multiple
meshing pipelines with a balanced number of worker processes per distributor and merger
together with a pre-partitioning of the geometry and a post-processing of the mesh parts.
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Figure 17. View from the front.

Figure 18. Zoom into ADT vane sensor area.
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Figure 19. Surface mesh of single ADT vane sensor.

Figure 20. Surface mesh near �n.

Despite that, the important total time to generate the mesh can be reduced down to approxi-
mately 7min for this con�guration enabling fast turn-around times and e�cient optimizations.
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Figure 21. Surface mesh at engine exhausts.
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Figure 22. Speed-up and runtime measurements.

8. CONCLUDING REMARKS

In this paper a new object-oriented (OO) approach to surface meshing has been presented
based on the ST++-system. The OO design and implementation have been explained
together with the advantages of this approach, compared to the classical structured program-
ming method. The di�erent components of the system and how they interact together have
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been explained in detail. Algorithmic enhancements to the advancing front algorithm have
been proposed. It has been shown that a modi�ed side selection strategy improves the run-
time performance to a noticeable amount. Additionally, an improved ‘ideal point’-calculation
has been demonstrated to be mandatory for the application of the advancing front triangu-
lation directly on ‘real world’ CAD data. The performance improvements resulting from a
parallelisation of the surface mesh generation procedure have been outlined, together with a
discussion of the most important aspects inherent in the parallelisation applied. An elegant
and automatic method to derive a well suited mesh size speci�cation has been presented, re-
lying on a geometry analysis=rasterization. Finally, the application of the system to a complex
example demonstrates the capabilities of the approach.
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